THE THIRD EDITION OF THE NUTRIENT COMPOSITION TABLES

MICHAEL EVANS*

The prime purpose of the tables is to provide the Pig, Poultry and Stockfeed Industries with a set of working values for the formulation of pig and poultry diets.

A third edition of the nutrient composition tables is shortly to be published by the Queensland Department of Primary Industries. This edition is a complete revision and considered to be a substantial improvement on the earlier editions. The improvements are as follows:

1. The tables have been prepared from a much larger data base, and the proportion of Australian data included have been substantially increased. Overseas data have only been used where there is little or no Australian information available.

2. The composition tables for pig and poultry have been combined and the tables now include values applicable to both pigs and poultry.

3. The number of feedstuffs has been increased from 102 to 144.

4. Where possible, the standard error, number of samples and the coefficient of variation have been included so that the user may know the variability of the information presented.

The nutrient composition values given in the tables for a particular feedstuff have been derived by grouping individual samples which are considered to be nutritionally similar. For example, the cereal grains have been grouped according to their protein content. Other feedstuffs such as the vegetable protein meals have been grouped according to their oil extraction process whilst values for others, such as the meat meals, have been derived by regression techniques using their whole data base. In the case of meat meals the reason for using regression techniques was for the purpose of smoothing out some of the great variability that exists between individual meat meal samples. Regression techniques were also used to confirm the protein groupings used for the grains, that is, amino acid values derived by using both the individual sample protein grouping and the regression technique using the whole data base for a particular grain proved to be very consistent. Further details of the criteria by which the values were derived are included with the tables.

Areas in the tables where information is scanty or lacking include tryptophan, linoleic acid, trace elements and vitamin values for all feedstuffs. In many instances where there is limited information available it is difficult to determine the reliability of the data. In these circumstances this information should only act as a guide. There is also limited Australian data on the metabolisable and digestible energy values for some protein sources, grain by-products and lucerne.

The tables are most useful when some fore knowledge of the feedstuff allows the selection of the most representative feedstuff analysis. For example, the type of information that would be useful to know about a grain is its protein content, whilst for soybean meal, the method of processing is applicable.

* Department of Primary Industries, Animal Research Institute, Yeerongpilly, Qld 4105.