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Nutritional manipulation of body composition
and efficiency in ruminants
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Summary
Future meat production systems will focus on maximizing
efficiency and optimizing utilization of inputs. There
will be large penalties for product that fails to comply
with market specifications, particularly carcass yield and
meat quality traits. This paper reviews nutritional
options for manipulation of body composition and their
associated affects on carcass composition and quality
and the efficiency of energy utilization for growth.

Key elements that dictate the response of
ruminants to feed restriction are the severity and timing
of the restriction with respect to maturity. Variation in
either of these elements results in differential affects on
gross composition, fat partitioning and the efficiency
of feed use for gain. The efficiency with which the
animal uses energy to maintain the body and the ability
of the animal to exhibit compensatory gain is coupled
to the metabolic state of the visceral organs. Strategic
manipulation of the energy yielding nutrients relative
to protein content of feed and the specific addition of
dietary constituents (for example, rumen escape amino
acids, starch and oil) can also affect body composition
and the efficiency of energy utilization for growth and
maintenance. To capture the benefits of these effects
and devise new and novel management procedures to
manipulate body composition, a model which
incorporates the interaction between nutrient supply
and body composition is being developed.

Introduction
Cattle and sheep-meat production systems are faced
with the challenge that the traditional goal ofmaximising
output has been replaced by a goal of optimising
utilisation of inputs and maximising efficiency.
Increasing pressure is placed on the product (that is
the carcass) to meet graded criteria that include weight,
yield, fatness and consumer acceptability. Failure of
carcasses to meet market specifications will result in
immediate financial penalties followed by a longer-term
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loss of market access. Reducing fatness to an optimum
level (accepting that there are specialist beef markets
where intramuscular fat is desirable) and increasing lean
content are seen as necessities for increased production
efficiency and consumer acceptability of red meat. Whilst
genetic selection for carcass and efficiency traits are
possible, changes achieved are long-term, often have
a high initial cost of implementation, occur in a fixed
direction and are inflexible in the short term. Immediate,
short term, often lower cost and flexible changes in both
carcass composition and efficiency can be achieved
through manipulation of nutrition. Some of the options
for nutritional manipulation of body composition and
their associated affects on carcass quality and efficiency
will be discussed.

Figure 1 Tissue deposition patterns as a function of
maturity. (Source: Butterfield, 1988).
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Effect of nutrient supply on body
composition
Carcass composition and feed efficiency can be
manipulated through varying the quantity of feed
provided or by altering the constituents of diet. Some
knowledge of the accumulation of body tissues in
animals when fed ad libitum throughout their life (often
defined as “normal growth”) is required for comparisons
of the component changes induced through nutritional
manipulation. In general changes in individual
components that occur relative to each other during
normal growth are best quantified with respect to weight
by non-linear functions such as the allometric or
quadratic growth equations (Huxley, 1932; Tulloh, 1963;
Fourie  et al. 1970; Butterfield, 1988). As body weight
increases towards an animals’ mature weight the
proportion of fat increases, the proportion of muscle
decreases slightly, or remains constant and the
proportion of bone decreases. The differential maturing
pattern for carcass traits are shown in Figure 1.

Growth path or rate of growth at specific periods
of development has historically been used, albeit in
many cases unknowingly, as a method of altering carcass
composition. The critical nutritional factors that affect
responses in body composition during growth path are
the timing and severity of the nutritional intervention,
and nutrition subsequent to the point of intervention.
The severity and duration of the feed restriction
influences the patterns of tissue mobilisation, but other
factors including sex and stage of maturity affect the
magnitude and direction of the response. In general, a
feed restriction which leads to altered body composition
can be classified into situations where growth during
restriction relative to normal growth is reduced, is held
at maintenance or no-growth, or involves weight loss.
Recovery from these different situations is called
compensatory growth or realimentation, although the
rate and composition of recovery may differ depending
on the nature of the restriction, and the feed quality and
quantity available during refeeding. In the examples
discussed below the responses reported are to variation
in nutrient intake, irrespective of quality and quantity
of feed available i.e. nutrient intake is considered as the
product of quantity and quality (i.e. nutrient density)
of feed.

Restricted positive growth

Restricting feed supply, and hence growth rate, in the
finishing phase of ruminants has received considerable
attention with regard to manipulating efficiency of feed
use and limiting fatness (Owens et al. 1993; Murphy
and Loerch, 1994; Sainz et al. 1995; Mathison and
Engstrom, 1996). Restricting energy supplied above that
for maintenance results in a decline in the rate of fat
accretion, whilst proportionately higher or maximal rates
of lean deposition are maintained (Bass et al. 1990).

Figure 2 Interaction between feed restriction and stage
of maturity on body composition. Restriction at an early
stage of maturity will result in animals being assessed as
fatter at slaughter. Restriction at a later stage of maturity will
result in animals being assessed as leaner at slaughter
(Source: Oddy 1997a).

This was consistent with the observations of Marias et
al. (199 1) and Murphy and Loerch (1994) who showed
that lambs and steers, respectively, restricted to 80% of
ad libitum had lower daily fat accretion rates, although
daily accretion rates of protein and water were
unaffected. As a result when compared at the same live
weight, animals that had been restricted below ad
libitum have lower proportions of fat and higher
proportions of lean than unrestricted animals (Turgeon
et al. 1986; Bass et al. 1990; Marias et al. 1991; Wright
and Russel, 199 1). However, the proportional decrease
in fat due to restriction diminished as animals
approached mature size (Andrews and 0rskov, 1970
Black 1974).

Although the above response to nutrition is most
commonly reported it is by no means universal.
Kellaway (1973) and Drennan (1979) reported that plane
of nutrition had no effect on the body composition of
growing animals, whilst others have shown that
restricted animals have higher proportions of fat and
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lower proportions of lean (Baker et al. 1985; Butler-
Hogg and Johnsson, 1986; Greef et al. 1986b). It is
difficult to reconcile these differences through a single
mechanism. From a dietary perspective, the proportions
of protein to energy in the rations used will alter the
relative rates of fat to protein deposited (Black, 1974;
Butler-Hogg and Johnsson, 1986; Van Houtert, 199 1).
Stage of maturity at which the restriction is imposed
and the difference in length of time and magnitude of
restriction relative to ad libitum fed animals will also
contribute to the variation (Carstens et al. 199 1; Carstens,
1995).

A hypothesis to explain the response of carcass
composition to restriction at increasing levels of maturity
was proposed by Oddy (1997a)  (Figure 2). If restriction
is imposed at a very early stage of maturity (prior to
weaning), subsequent protein deposition may be
reduced so that near maturity regrown animals are fatter
than well grown control animals (Thorton et al. 1979;
Tudor et al. 1980). Carstens  (1995) showed that imposing
a restriction on cattle at eight months of age will have
little effect on total body fat at maturity. He suggested
that at approximately 40% of maturity the impetus for
fat deposition is low and the ability of the animal to
adjust protein deposition rates appears high (Ryan,
1990). This suggests that restriction at this stage of
maturity may have little effect on the body composition
of the animal at normal carcass weights.
Partitioning of fat is influenced by growth rate. In
general, high rates of gain result in relatively more
subcutaneous than intermuscular fat (Murray and
Slezacek, 1976; Ledger and Sayers, 1977; Wright and
Russel, 199 1). Fat deposition is favoured in the carcass
depots compared to the internal fat depots as the rate
of live weight gain increases (Hodge and Star, 1984;
Butler-Hogg and Johnsson, 1986). Feed restriction has
the greatest effect on those fat depots that are
undergoing the most change at the time at which the
restriction is imposed. The majority of experiments have
implemented restricted feeding during the finishing
phase, consequently the greatest change that has been
observed is a difference in weights of the later maturing
carcass fat depots.

Weight stasis

The most notable change in body composition that
occurs in the short term for animals that are maintaining
liveweight, is a decline in the weight and proportion of
visceral organs, particularly the liver and the digestive
tract (Foot and Tulloh, 1977; Murray and Slezachek,
1988b; Ryan and Williams, 1989; Iason and Mantecom,
1993). This results in a reduction in maintenance
requirements of animals in weight stasis by reducing
the size of those organs that have a high metabolic
activity (Keenan et al. 1969; Kellaway, 1973; Koong et
al. 1985; Ferrell, 1988; Iason and Mantecom, 1993). This
reduction probably accounts for the relative decline in
the amount of feed required to maintain liveweight in

animals exhibiting positive growth at the time when the
restriction is imposed (Lines and Pierce, 193 3; Foot and
Tulloh, 1977; Ledger and Sayers, 1977; Turner and
Taylor 1983; Afonso and Thompson, 1996).

As weight stasis results in a decline in visceral
weight, this decline must be matched by an increase in
carcass weight, particularly that of the carcass fat depots
(Keenan  et al. 1969; Winter, 197 1, Foot and Tulloh, 1977;
Notter et al. 1983;Aziz and Murray, 1987, Murray and
Slezacek, 1988a; Ryan and Williams, 1989). However,
there may be additional affects due to initial body
composition. Fox et al. (1972) showed that fatter animals
tend to gain body fat during weight maintenance, whilst
leaner animals mobilised body fat. There may be no
effect on the weight of carcass muscle during a period
of weight stasis for immature cattle or sheep (Murray et
al. 1974; Murray and Slezacek, 1988a). However, this
may not always be the case in immature sheep, as
Afonso and Thompson (1996) showed that ewe and
ram lambs maintaining weight, increased both total body
fat and carcass lean to compensate for a decline in
visceral organ weights. These authors also showed that
the proportion of subcutaneous fat declined relative to
proportions of intermuscular and internal fat, thus
subcutaneous fat was more responsive to nutrition. In
contrast, Murray et al. (1974) showed that carcass fat
was not utilised to any great extent during a period of
maintenance feeding of steers, whilst kidney and channel
fat was significantly reduced during the period of
maintenance. In summary animals that have experienced
a period of weight stasis have higher proportions of
carcass fat and lower proportions of viscera and internal
fat. Carcass muscle is relatively unaffected by weight
stasis.
Weight loss

A number of studies have examined the potential of a
short term weight loss period as a mechanism ofreducing
fat prior to slaughter (Hedge and Star, 1984; Kirton  et
al. 1995). There appears to be two phases of tissue
mobilisation for immature animals that are forced to lose
weight due to a severe feed restriction. The initial phase
of weight loss involves mobilisation of lean tissue,
initially from a reduction in the size ofthe visceral organs
and the digestive tract, and subsequently a loss of
muscle tissue corn the carcass (Meyer and Clawson,
1964; Drew and Reid, 1975, Winter et al. 1976; Thorton
et al. 1979; Searle et al. 1979; Butler-Hogg, 1984, Ryan
et al. 1993b). There is a reduction in carcass fat (Berg
and Butterfield, 1976),  although the extent of this loss
varies with the physiological state and the sex of the
animal. Pregnancy increases the rate of carcass fat loss
(Petterson et al. 1994) and males tend to lose at a faster
rate than females (Ball, 1996).

As weight loss progresses through the second
stage, the rate of loss of lean from the viscera and
carcass declines and the rate at which fat from the
carcass depots is mobilised increases (Drew and Reid,
1975; Aziz et al. 1992). During this phase there is a
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selective depletion of fat from the subcutaneous depot,
whilst the weight of internal depots remains relatively
unaffected (Robinson, 1948; Butterfield, 1966; Seebeck,
1967; Russel et al. 1968; Little and Sandland, 1975). An
exception to this pattern occurs at low body weight,
where kidney and channel fat may be lost more quickly
than carcass fat (Seebeck and Tulloh, 1968). In summary,
if animals are compared with controls during the early
phase of weight loss (less than one month) they will be
comparatively fatter, whereas animals that have been in
a weight loss phase for a longer time period (greater
than one month) will be leaner than controls (Butler
Hogg, 1984; Aziz et al. 1992)

The rate of body weight loss effects the
proportions of lean and fat that are mobilised. Searle
and Graham (1972) showed that a high rate of weight
loss results in a higher rate of lean mobilisation and a
lower rate of weight loss results in a higher rate of fat
mobilisation. These results were incorporated into a
conceptual model by Black (1974),  and subsequently
confirmed by Butler-Hogg, (1984). However Black
(1974) and Searle et al. (1979) suggested, that given
time to equilibrate at a new lower weight, animals will
have a body composition similar to that of the
unrestricted animal.

Realimentation and compensatory
growth

Compensatory growth is the most widely acknowledged
form of growth path manipulation. Fox et al. (1972),
Turgeon et al. (1986),  Wright and Russel, (1991) and
Ryan et al. (1993a,b)  have all proposed that there are
several distinct phases to live weight compensation.
The initial phase of compensatory gain has a high rate
of lean deposition that primarily reflects the growth of
the visceral organs including the digestive tract.
(Butler-Hogg, 1984; Greef et al. 1986b; Ryan, 1990;
Drouillard et al. 199 1 a,b;  Iason and Mantecom, 1993).

Fox et al. (1972),  Rompalaet al. (1985) and Wright
and Russel (199 1) showed that steers deposited more
protein during the initial stage of compensation. Searle
and Graham (1975) and Kabbali et al. (1992) also
observed higher rates of protein (muscle) deposition in
the early phases of realimentation in compensating
lambs. Therefore in the initial stages of compensatory
growth or realimentation, compensating animals will be
leaner than ad libitum fed animals. The second phase
of realimentation is characterised by a higher proportion
of fat deposition that occurs once visceral organs have
been replenished (Hayden et al. 1993; Ryan et al. 1993b;
Henricks et al. 1994). Fox et al. (1972),  Butler-Hogg,
(1984),  Turgeon et al. (1986),  and Wright and Russel,
(1991), have shown that it is this phase of fat
development during the latter part of compensatory
growth that enables animals to achieve a similar body
composition to those that have not been restricted.
Hayden et al. (1993) showed that compensatory growth
had differential effect on fat partitioning, with
compensating steers still having lower internal fat

weights at a final endpoint. They suggested that a period
of feed restriction had a greater effect on the internal
depots, compared to the later maturing subcutaneous
and visual intramuscular (marbling) depots, which
respond to lipid accumulation during the latter stages
of compensatory growth.

The longer the recovery the greater is the
possibility that animals, when compared at the same
weight, will show no difference in body composition
(Bass et al. 1990). However before that time,
compensating animals may be leaner or fatter depending
on the nature and length of the previous restriction
period. As a result the discrepancies in the literature
reporting that animals can either be leaner or not
different after compensatory growth, appear to be
related to the length of time that animals are in the second
phase of compensatory growth (Nicol and Kitessa,
1994). Results from Burton et al. (1974), Drew and Reid
(1975),  Little and Sandland (1975) and Foot and Tulloh
(1977),  show that restricted animals were leaner then ad
libitum fed animals. However these results can be
explained by the fact that comparisons were made
before animals had fmished compensatory growth.
Kabbali et al. (1992) suggested that compensating lambs
were leaner due to the inability of internal fat depots to
recover. This may explain the results from experiments
that have used chemical analysis of the whole body to
compare compensating and normally grown animals.

A special case exists for animals near or at maturity
that experience a period of severe feed restriction; they
may not compensate fully if compensation is expressed
on a live weight basis, even when offered ad libitum
feed (Taylor et al. 1981; Ryan 1990). Meyer and Clawson
(1964) and Greef et al. (1986a,b)  indicated that there is a
shift  in metabolic pathways in severely restricted sheep
such that fat deposition is enhanced. For these severely
restricted animals the shift towards fat deposition was
maintained during realirnentation resulting in fatter
animals. A possible explanation is that under severe
restriction the viscera, and in particular the liver, does
not compensate fully and thus there is an alteration in
both endocrine control of, and substrate supply for,
tissue accretion in the carcass.

Our conclusion is that there appears to be no difference
in ultimate body composition between restricted and
continuously grown animals, provided that the period
of compensation is of sufficient length to enable the
latter phase of compensatory growth to occur (Fox et
al. 1972, Kellaway, 1973; Murray and Slezachek, 1976;
Butler-Hogg, 1984; Wright and Russel, 199 1; Ryan et
al. 1993a,b).  From the previous observations, it is
important that comparisons between compensating and
control animals are made at live weights which are of
commercial significance (market specified weights),
because the weight at which animals are slaughtered
during compensation can greatly affect the conclusions
of compensatory growth studies (Turgeon et al. 1986).



196 Ball et a/.

Role of visceral organs on
efficiency and composition
Variation in the mass of the visceral organs, specifically

importantly, approximately 70% of energy use above

the liver, is seen as a major contributor to variation in

maintenance is used by the liver and gut (Johnson et

energy expenditure. This occurs through the
disproportionately high energy requirements with
respect to mass of the metabolically active visceral
organs (Baldwin and Bywater, 1984; Ferrell and Jenkins,
1985; Burrin  et al. 1990; Freetly, 1995). Birkelo (1995)
summarised the importance of the visceral tissues in
total animal energetics by stating that they contribute
between 40-50% of the total body energy expenditure
although only occupying 10% of total body mass. More

cause and effect. Our interpretation differs in that we
believe that the rapid response in visceral organ size

is greater. A similar logic can be extended as an

during realimentation (as reflected in higher rates of
deposition; Butler-Hogg, 1994) occurs through a

explanation of the high rate of visceral lean loss during

capacity of the viscera to replenish. There is a clear

feed restriction.

functional relationship between the size of the digestive
organs (rumen, small intestme etc) and feed intake that
indicates that as feed intake increases the weights of
these tissues must increase (Koong et al. 1985; Johnson
et al. 1985; Fluharty and McClure, 1996; Kouakou et al.
1997). In addition as the rate of turnover in the viscera
is high (KS ca. 60%/day liver, 50-60%  small intestine
and 30--40%/day rumen),  being approximately 5 times
that of muscle turnover, the capacity to deposit tissue

al. 1990; Ortigues and Doreau, 1995). As a result the
reduction in the mass of the visceral tissues is the one
of the most notable events that occurs in animals that
are forced to lose weight when subjected to a period of
feed restriction (O’Donovan, 1984; Ryan, 1990; Carstens,
1995; Wester et al. 1995). The metabolic lag in the
reduction in the energy requirements, initially as a result
of lower visceral organ weights, that occurs when
animals are refed is thought to promote the acceleration
of tissue deposition that is known as compensatory
growth (O’Donovan, 1984; Ryan 1990).

The capacity of the viscera to respond to
nutritional supply results in clear differences in body
composition, particularly if comparisons between
treatment groups are based on chemical composition.
Short-term recovery of visceral lean during
realitnentation usually is consistent with animals being
assessed as leaner relative to controls. As a result of
this high rate of visceral organ hypertropy the ratio of
leanfat in accreted tissue is higher, resulting in the
efficiency of retained energy being greatly increased in
animals that exhibit compensatory growth (Johnsson

Effects on composition

Clearly any nutritional manipulation that effects the
relative proportion of viscera with respect to the total
body will alter the effective energy that is available for
muscle and fat accretion. The results of Oddy (1997b)
emphasize the importance ofthe contribution ofvisceral
organs to total body energetics in compensating and
normally grown animals. He showed that although the
gross efficiency of carcass gain per unit of metabolisable
energy intake was apparently higher in compensating
lambs, there was no difference in the energy gain in the
carcass per unit of metabolisable energy available for
gain. This was after adjusting for energy use of the
visceral organs for the compensating and normal lambs.
Differences in the rate and composition of gain between
cattle that have been fed at forage diet and those fed on
a concentrate diet (at an equal metabolisable energy
intake), can also be accounted for by differences in the
heat production from the portal drained viscera
(Reynolds and Tyrrell, 199 1; Oddy et al. 1997a).

Ryan et al. (1993b)  suggested that replenishment
of visceral organs is the major priority for compensating
animals. This conclusion is supported by the results of
numerous experiments that have examined
compensatory growth where there are no differences in
the weights of the non-carcass component between
compensatory and normally grown animals despite
differences in the weights of the carcass tissues
(O’Donovan, 1984; Ryan, 1990; Carstens, 1995). The
concept of priority may be misleading as this suggests

et al. 1985; Carstens  et al. 1989).
Studies on perturbed growth on viscera mass have

predominately concentrated on the mean difference
between treatment groups. However of greater
importance may be the increase in the variation ofvisceral
organ weights that has been observed within restricted
feeding groups (Morgan and Owen, 1993; Hicks et al.
1990). We believe that an increase in the variation of
visceral organ mass leads to a greater increase in the
variation in muscle and fat deposition. Failure to
describe adequately an increase in the variance within
a treatment group may have contributed to the confusion
about the effects of nutritional manipulation on body
composition

Maintenance requirement (ME,,,)

There is a clear response of estimates for MEIIl  to prior
levels of feeding (Ball, 1996). This is mirrored by a direct
response in the mass of visceral organs (Ferrell et al.
1983, Ferrelland Jenkins, 1985; Koong etaZ.  1985; Burrin
et al. 1990). As an example, growing lambs that were fed
at high levels and then at low levels of intake (HL)  had
lower maintenance requirements than lambs of the same
weight that had been fed at low levels followed by high
levels (LH).  The LH lambs had higher weights ofvisceral
organs (Ferrell et al. 1983; Ferrell, 1988). A similar
difference existed in maintenance requirements of
growing steers following similar growth paths (Sainz et
al. 1995).
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It was shown that the proportion of metabolically
active tissues of the total body was lower in the
previously restricted animals when compared to the
control animals (for review see Ferrell, 1988). Keenan et
al. (1969) showed that a 32% reduction in energy
requirements per kilogram of liveweight  between control
and previously restricted mature sheep was closely
correlated with a 35% decrease in the mean weight of
liver, rather than the 14% difference in the mean metabolic
weight of the two groups. Their results indicate that
visceral organ energy expenditure was reduced during
the restriction period, which concurrently increased
maintenance efficiency. Wester et al. (1995) showed that
although oxygen consumption increased per gram of
liver tissue during weight loss, total liver oxygen
consumption declined as a result of a reduction in the
mass of the tissue. Thus there is evidence that metabolic
activity, as a function of mass, is not constant in animals
losing weight and that liver weightper se may not be a
reliable indicator of changes in energy expenditure
within the visceral organs during weight loss and weight
gain (Sainz, 1995). However in complete contrast,
Drouillard et al. (199 1 a) indicated that the activity of
visceral tissues was not responsible for the improved
efficiency during compensatory growth in previously
restricted lambs. In that study although visceral organ
size was reduced during the restriction, there was no
apparent compensatory growth in the lambs when
feeding levels were increased to ad libitum.

Effect of restriction on efficiency
Efficiency of use of feed for gain

Sainz (1995) indicated that moderate feed restriction
improves feed efficiency by about 0.6% for each
percentage unit in restriction relative to ad libitum, the
optimum being between 12-15%,  about 80-85% of ad
libitum. He stated that the improvement in the efficiency
of growth arises from multiple mechanisms whose
specific contribution to the magnitude of improvement
in efficiency changes with the degree of restriction.
Improvements in digestibility and the ME content of
the feed occur with feed restriction, although these
effects are minor. Sainz (1995) noting that Webster 1980
indicated that the cost of lean gain was 23.7 MJ/kg and
the cost of fat was 38.6 MJ/kg, stated that changes in
the leanfat ratio of the gain and lower maintenance
requirements probably accounted for the majority of
the increase in feed efficiency.

Muir et al. (1997) indicated that when compared at
the same live weight, steers f?om an ad libitum growth
path were 10% more efficient than compensating steers,
but Butler-Hogg and Tulloh (1982) indicated that growth
path did not effect overall efficiency of growth, if animals
were compared at the same cumulative feed intake. In
our own experiment (Ball, 1996),  immature sheep were
fed at either 140,100 or 60% ofmaintenance (SCA, 1990)
for 15 weeks and then at maintenance for a further 21
weeks. When retained energy was expressed relative to
cumulative energy intake (Figure 3), the sheep that had

Figure 3 Retained energy as a function of cumulative energy intake for immature ewes of three growth paths, being 140%,
100% and 60% of maintenance. The individual animal responses are identified (Source Ball, 1996).
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been fed at 140% of maintenance had higher levels of
retained energy for the same cumulative energy intake
than sheep fed at 60% of maintenance. In this experiment,
animals that had been maintained in a positive energy
situation had a higher gross efficiency of energy than
animals that had experienced an energy deficit at the
same level of cumulative feed intake. Thus, in the short
term at least, growth path can be used to manipulate
growth efficiency at specific slaughter points. These
results, however, do not contradict the hypothesis of
Butler-Hogg and Tulloh (1982),  who suggested that
given an adequate length of time there was no difference
in the retained energy (measured by body composition)
relative to cumulative energy intake of restricted and
normally grown sheep. As evident in Figure 3, there is a
possibility for responses to treatments to converge with
time.

Efficiency of feed use for maintenance

Webster (1980) reported the energy cost of maintaining
a unit weight of protein was higher than that for fat,
leading to the concept that maintenance costs may be
more closely related to lean body mass (Ferrell et al.
1979; Tess, 1984; Olthoff and Dickerson 1989;
McCracken, 1992),  rather than simply to metabolic body
size (Brady 1945; Taylor et al. 198 1). In support of this
Graham (1967),  noted that if fasting heat production
(FHP)  was described as a function of lean body mass
then the exponent for body size was not significantly
different from unity. This also indicates that FHR, or
ME% is directly proportional to lean mass with no major
effect of either fat or bone weights. Sheep (Jopson et
al. 1994, Ball et al. 1995) and cattle (Klosterman, 1968;
Solis et al. 1988; DiContanzo  et al. 1991) that are
comparatively leaner have been shown to have a higher
maintenance energy requirement. However Ortigues et
al. (1993) indicated that a distinction exists between:-
1) animals, that are comparatively leaner than their
contemporaries and have higher maintenance
requirements and 2) animals that are leaner as a result of
a period of weight loss fi=om feed restriction and have
lower maintenance requirements due to a metabolic
adaptation to the lower feeding level (Marston,  1948).
This difference may be related to the proportion of lean
that is either visceral (high activity) or muscle (lower
activity).

An apparently persistent change of use of energy
for maintenance (maintenance efficiency) is one of the
key effects that manipulating growth path has on
production efficiency. There has been a number of
studies have compared estimates for maintenance
efficiency in animals fed at either low or high levels of
feeding (Ferrell et al. 1983; Koong et al. 1985; Ferrell,
1988; Sainz et al. 1995). These studies showed that
estimates for maintenance requirements are lower in
animals that have been restricted to either maintenance
(Graham and Searle, 1975; Ledger and Sayers, 1977;

Figure 4 Changes in maintenance efficiency relative to
the initial estimate obtained at the end of a six week
maintenance feeding period (MJ ME required to maintain a
kg of empty body weight per day, ME kg) as a function of
time for 60, 80 and 100% of maintena#ce during the
restriction and realimentation phases. The dotted lines
represent the 95% confidence limits for sheep fed at 60%
of maintenance.

Yambayamba et al. 1996; Afonso and Thompson, 1996),
or below maintenance feeding levels (Graham and Searle,
1979; Gingens et al. 1980, Ryan et al. 1993a).  Ortigues
and Durand (1995),  showed that there was a decrease in
the maintenance requirements of mature ewes that were
fed at half the conventional requirements for
maintenance, although the energetic efficiency (km)
when expressed on a metabolic live weight basis was
the same as the estimate at maintenance.

As an example the NRC (1996) recently proposed
an equation that described changes in maintenance
requirements due to prior feeding level as a function of
condition score of the animal. The form of the equation
used implied that maintenance increases linearly with
condition score from 0.8 to 1.2 times the normal (where
normal or average condition score was 5). Ferrell(1995),
stated that the equation does not address how the
animal arrived at that condition score, or for how long it
had been at that body composition. The equation also
neglects the confounding effects of variations in
condition score imposed by seasonal oscillations in
body composition or changes in fat partitioning resulting
from different physiological states (Ball et aZ.  1996).

Given this information, our own recent studies have
examined the affect that nutritional supply manipulation
has on estimates of maintenance efficiency. Ball et al.
(1997) fed mature ewes and rams at maintenance or at
below maintenance for 15 weeks and then at maintenance
for 15 weeks. As shown in Figure 4, sheep that had
been fed at 60% of maintenance had higher maintenance
requirements per kilogram of empty body weight than
sheep fed at maintenance (SCA, 1990). This suggests
that nutritional manipulation via feed supply does have
an effect on estimates for maintenance requirements.
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Figure 5 Fitted relationship between nitrogen balance and N intake for liquid-fed lambs differing in Iiveweight. (- 5 kg, - -
15 kg and ---25 kg) and metabolisable energy intake (ME; MJ/day). [Source: Black and Griffiths, 19751.

Effect of specific nutrients
Effect of specific nutrients on body
composition

The foregoing discussion was based on the assumption
that energy supply was the major nutritional influence
irrespective of the method by which variation in energy
supply was imposed. This would include, as a first
approximation, low intake capacity arising from high
roughage or low protein feed, or limited availability of
feed. In these situations amino acid outflow from the
rumen is generally proportional to total intake. It is
possible to manipulate relative amounts of amino acids
and energy yielding nutrients to ruminants. What
happens when the relativity between amino acid and
energy supply changes?

Kempton (1979) introduced the concept of an
optimal protein (P) to energy (E) ratio (P:E), principally
for wool groti response to protein supply. However,
for growth of body constituents the idea of a ratio is
less useful, principally because amino acid and energy
supplies have both dependent and independent effects
on nitrogen balance, and hence deposition of protein in
body and wool. Black and Griffiths (1975) described the
nature of the nitrogen balance response to amino acid
and energy supply from a summary of data collected in
trials using over 500 lambs over the weight range from 5
to 35 kg. In general, they demonstrated that at a fixed
energy intake, N balance increased linearly in response
to amino acid supply up to a maximum for that energy
supply and the weight of the lamb (Figure 5). This pattern
of response has since been shown in pigs (Dunkin et
al. 1984; Campbell et al. 1985) and calves (Gerritts et al.

1996). Dove et al. (1977 a,b) demonstrated that balance
of essential to non-essential amino acids affected the
response, but that with most practical protein sources a
gross imbalance of amino acids was unlikely.
Accordingly, for the following discussion, it will be
assumed that for ruminant diets amino acid imbalance
is not a common problem.

Figure 5 implies that where amino acid supply was
less than the inflection point for any energy intake, that
energy deposition would proceed in the absence of
nitrogen deposition i.e. the animal would fatten. Thus
the relative amounts of fat and protein in the body could
be altered. In that now classic work of Black and Gtiths
(1975) body composition change was not measured.
However, the implications of protein supply for fat
deposition was at that stage in pigs, poultry, pre ruminant
(Norton et al. 1970) and young ruminant lambs (Orskov
et al. 1976).

An assured supply of supplementary amino acids
to ruminants was not readily and quantitatively
achievable until Ferguson and colleagues (1967)
demonstrated the role of formaldehyde protection of
proteins on growth of wool. Effects on body
composition were harder to demonstrate, in part
because of failure to understand the relationship
between amino acids and energy supply, but also
because of difficulties in measurement of body
composition compared to measurement of wool growth.
Although significant live weight responses to a post-
ruminal supply of amino acids had been clearly
demonstrated, particularly on low quality feeds (Leng,
1975), it was some time before effects of amino acid
supply on body composition was seriously studied in
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Table 1 Means and standard error for the effect of dietary treatments on the fat depot characteristics of feedlot  steers (S.H
Bird unoublished data).

ruminants. Infusion studies of Fattet et al.  (1984)
demonstrated that at least at low energy intake an
increased amino acid supply could prevent weight loss
by maintaining muscle mass at the expense of fatty
tissue. This suggested a method for reducing fatness
in overfat animals (Bell and Bower, 1990; Vipond et al.
1989) which could be applied in practice. There remained
the problem that these nutritional strategies when used
to reduce fat deposition also restrict growth.

Increased amino acid supply relative to energy at
low energy intakes has been shown to increase muscle
and skin protein deposition (Edwards et al. 1989a,b;
Hegarty et al. 1994; Oddy et aZ. 1994). However, as
energy intake increased, rumen escape amino acid
supply became less effective in promoting protein
deposition and could also lead to increased fat
deposition (Van Houtert, 199 1; Oddy et al. 1994). We
believe that amino acid supply can increase fat
deposition because of the increased oxidation of amino
acids and thus provision of carbon skeletons (Oddy et
al. 1997b).

Manipulating the supply of energy yielding
nutrients compared to amino acid supply can increase
fat deposition provided there is no reduction in feed
intake due to reduced amino acid supply. In practice
this does not always happen with high-energy feedlot
diets. Our experience and that of others (Zinn and Shen,
1996),  indicates that increasing fat in feedlot diets does
not result in increased carcass fat, although on high
roughage diets supplemental fat (as calcium soaps) can
increase fat deposition (Van Houtert, 1991). Xn high
energy feedlot diets the form of fat does not seem to
matter. Rumen protection either by formation of calcium
soaps (Palmquist and Jenkins, 1982), protective
encapsulation (Cook and Scott, 1970), or simply the
addition of Ca ion as Ca(OH),  to a feedlot diet containing
fat does not increase carcass or intramuscular fat
content of cattle (S. Bird unpublished data, Table 1).
Specific nutrients, for example propionate, have been
associated with increased fat deposition and increased

efficiency of fattening (Blaxter, 1962). However the
addition of propionate to roughage diets have shown
no effects on fat deposition (Van Houtert, 199 1). In part
this could be because of homeostatic mechanisms
regulating

1 uptake of nutrients by tissues

2 high rates of inter-organ flux of intermediates /
metabolites

3 alternative energy yielding pathways within
tissues.

Control of regulatory processes by nutrients is one way
to alter the partitioning between organs, and hence
composition of the body. For example, Edwards et al.
(1990) suggested that a possible means by which
rumen-escape amino acids increased muscle mass in
sheep fed low energy diets, was by regulation of plasma
IGF-1 and insulin and tissue sensitivity. This was
consistent with observations that branched chain amino
acids were potent insulin secretagogues and that leucine
enhanced insulin sensitivity of muscle (Garlick and
Grant, 1988). Trivalent chromium which alters insulin
release and tissue sensitivity and thus lean tissue
deposition in pigs (Boleman et al. 1995; Mooney and
Cromwell, 1995) and lambs (Kit&along  et al. 1995).

These examples illustrate that although substrate,
and thus nutrient, regulation of body components is
possible, the effects are generally not observed until
the nutrients exhibit regulatory effects on pathways
outside their normal pattern of mass action
(stoichiometry). Those regulatory effects have
differential effects across organs.

Indeed consideration of stoichiometry in a whole
animal sense is fraught with dangers because of our
limited understanding of the complex issues that
regulate inter-organ transport and within-organ
nutrient utilisation. For example, there are theoretical
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reasons why one might think that acetate utilisation is
inefficient. Complete oxidation of acetate yields 5 moles
ATP per mole C, compared with glucose where complete
oxidation yields 6 moles ATP per mole C, or lipid which
can yield up to 8 ATP per mole C. These estimates do
not allow that acetate oxidation preferentially displaces
glucose oxidation in muscle (see Pethick and Vemau,
1984). Moreover, they do not consider the energy cost
of glucose transport into the cell, and the regulation of
that process, whereas as far as we know acetate is fjreely
dimable  at least into muscle (see Pethick and Lindsay,
1982). Nonetheless, it is possible to perceive schemes
that utilise the best available biochemical knowledge
and show that substrate supply can affect efficiency of
nutrient use (eg. Black et al. 1987; Baldwin 1995),  despite
experimental evidence that such differences do not
occur (Orskov  et al. 1979).

There is good evidence that substrates and specific
nutrients can regulate processes both within and
beyond the metabolic pathways in which they are
involved. Allosteric modification of eflzyrne activity
within pathways by feedback, and sometimes feed-
forward, corn substrates and intermediates is well known
(see Newsholrue  and Start, 1973). It has recently been
shown that substrates can regulate gene transcription,
and thus alter the expression of regulatory elements
within different tissues. For example from birth to
suckling a high fat diet regulates expression of Carnityl
palmitoyl transferase -1. During the transition from
suckling to eating hard food (weaning) in the rat,
carbohydrate consumption induces expression of fatty
acid synthetase (Girard, 1996). Together these activities
demonstrate how pattern of substrate supply might
regulate differential development of one tissue with
respect to another. However, except for the effect of
butyric acid on rumen development, there are no clear
examples for ruminants ofwhere specific nutrients might
alter tissue development,

Confounding interactions with Feed
supply (examples)

There are difficulties (induced partly by statistical
limitations and partly by our own thought processes)
in interpreting and quantifying the interactions between
the level of nutrient supply and the specific pattern of
nutrient supply. In this conference Oddy et al. (1997a)
presented an alternative conceptual approach that may
improve the methodology to describe such interactions.
Whilst the interactions are complex and obviously
contribute to the variation in responses of both body
composition and efficiency to nutrition, they often have
been grossly over complicated on the one hand or
oversimplified and ignored on the other. We present a
few examples to show that the anomalies in published
results for nutritional manipulation can be accounted
for, by a confounding between nutrient supply and
composition of the animal.

The type of restriction that is imposed on the
animal in order to create a phase of weight loss is very

important when interpreting the different responses. In
most experiments, weight loss has been achieved by
restricting the supply of a high quality diet. But, feed
restrictions that occur in the field are also accompanied
by a reduction in the quality (particularly protein
content) of the feed. Drouillard et al. (199 1 a) tested the
effect of a reduction in the both the quality and quantity
of feed on compensatory growth. They showed that
lambs that had restricted protein intake lost considerable
amounts of carcass muscle, whilst lambs that had
restricted energy intake, but had adequate amounts of
dietary protein, were able to maintain carcass muscle.
In that experiment, and that of Fattet et al. (1984),
energyqestricted lambs mobilised carcass fat whilst
utilising dietary protein to maintain body lean reserves
so that these animals were leaner than both control and
protein restricted animals when compared at the same
weight. In support of this, Chowdhury et al. (1995)
showed that provided protein supply from the diet is
adequate, an animal can maintain or even gain lean tissue
during weight loss, by fueling energy demands through
mobilisation of fat reserves. They suggested that the
extent to which lean reserves can be maintained is highly
dependent on the body fat reserves of the animal prior
to the weight loss period. The conclusion Tom these
studies is that protein supply and the level of fat at the
start of the weight loss period interact to affect the
proportions of body components that are mobilised in
an energy deficit. Clearly the supply of dietary nitrogen
in a weight loss situation will be related to the perceived
lean content of the carcass.

The composition of the diet during feed restriction
also influences the response during early realimentation.
Drouillard et al. (199 1 b) showed that lambs previously
restricted in protein were able to regain a large
proportion of lost protein in the first two weeks of
realimentation. Whereas energy-restricted lambs that
had no loss in visceral mass during the restriction,
deposited lipid that accounted for 80% of the gain in
the first two weeks. Interestingly, there were no
differences in tissue deposition between energy and
protein restricted lambs after the initial two weeks of
realimentation

Recent evidence from Sainz et al. (1995),  suggests
that the type of feed given during the restriction affects
MEIIl during the subsequent realimentation period.
Steers that were fed a concentrate diet at restricted levels
(CL) had a 7% lower MI& relative to control fed steers
during realirnentation, whilst steers that were fed a
forage diet (FA) during the restriction phase had a 28%
higher MEm relative to the controls. They showed that
proportional differences in visceral organ weights
mirrored the differences in maintenance requirements,
suggesting that the 28% heavier visceral weights of the
FA steers was a forage diet effect that prompted higher
MEIIl  in those steers during the compensation period.

Quality of the diet has an effect on the magnitude
and nature of the gain during compensatory growth,
particularly in the early phase of realimentation. Several
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experiments have shown that compensating cattle and
sheep have higher protein requirements than ad libitum
fed animals when compared at the same stage of growth
(Fox et al. 1972; Fattet et al. 1984; Hays et al. 1995). In
the latter study, additional dietary crude protein in the
realimentation diet stimulated an increase in the rate of
lean accretion during compensatory growth. There is
evidence that suggests that compensating lambs,
deposit greater proportions of nitrogen within the body
at the same nitrogen intake (Hegarty et al. 1994, Oddy
et al. 1994; Oddy et aZ. 1997b). This indicates that the
efficiency of nitrogen capture may increase in
compensating  animals, but the dietary requirement for
protein may not.

Black (1974) indicated that a higher amount of
energy supplied at the tissue level would cause an
increase in the rate of fat deposition relative to protein,
but only where energy exceeded amino acid supply and
the capacity to deposit protein has been met (Black and
Griffiths, 1975). Previously restricted animals during
realimentation have lower maintenance requirements
(O’Donavan,  1984; Koong et al. 1985),  and a higher
efficiency of energy utilisation above maintenance
(Meyer and Clawson,  1964; Fox et al. 1972; Greef et al.
1986a,b;  Abdalla et al.  1988; Marias, 1991) when
compared to unrestricted animals at the same live weight.
As a result the increase in fat accretion observed during
the latter phase of compensation may be a function of
an increased energy supply at the tissue level. It is also
likely from the above results that this phase of fat
accretion would occur independently of a higher feed
intake (usually observed in compensating animals).
However, Thornton et al. (1979) and Schadereit et al.
(1995) suggested that there is a marked transition in fat
deposition that occurs as animals increase in maturity.
As such it is still possible that the deposition of fat may
be due to an increase in maturity, rather than an
associated effect of compensatory gain.

Conclusion
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