The role and power of ultrasound in predicting marbling

Animal Genetics and Breeding Unit
University of New England
Armidale NSW 2351
Ph: 02 6773 3141
Fax: 02 6773 3266
Email: wupton@metz.une.edu.au

Wayne Upton and Matt Wolcott

Session 5c

Introduction

Marbling is an important characteristic in determining the value of carcases for a number of Australia’s export markets. Research carried out by the Cooperative Research Centre for Cattle and Beef Quality (Beef CRC) has demonstrated that marbling is a moderately heritable trait, and that the selection of sires with high marbling estimated breeding values (EBVs) will improve the marbling potential of their progeny. Unfortunately, the trait is not directly assessable until the animal is dead, so indirect estimates of the trait are important if decisions are to be made regarding prospective slaughter animals and the selection of parents for the next generation.

Real time ultrasound measurements of subcutaneous fat depth and eye muscle area have been used in BREEDPLAN for the genetic evaluation of beef cattle since 1989. In 1998 real time ultrasound measurements of marbling as intramuscular fat (IMF) were included for analysis in BREEDPLAN. The value of EBVs based on ultrasound data should not be underestimated. EBVs calculated from scanned measurements provide a relatively accurate prediction of progeny merit for carcase traits on young sires. Ultrasound technology is a non-invasive and relatively cheap method of measuring carcase characteristics which would otherwise only be obtainable after slaughter. Scanning allows prospective breeding stock to be assessed for carcase traits using measures of the individual rather than needing to rely exclusively on progeny test or pedigree data. This means that animals can have accurate EBVs early in their life where the progeny testing alternative demands a delay until the sire or dam has progeny slaughtered.

For animals being finished to meet market specifications where marbling is an important factor, the prospect of being able to predict the marble score of carcases at entry to, or early in, the finishing phase is an attractive one. This would allow animals which don’t appear to have the propensity to marble to be diverted towards markets and production systems which don’t require high performance for this trait.

The role of scanning for genetic evaluation, and for managing carcase characteristics, are quite different and need to be considered separately. The BREEDPLAN genetic evaluation system predicts progeny performance based on measurements taken on the individual, results obtained from other animals linked to the individual by pedigree, and through analysis of genetically correlated traits such as subcutaneous fat depth. Comparing individuals on the basis of a single ultrasound measurement of marbling, however, relies entirely on the accuracy of the technique, which can be influenced by a range of factors. The two purposes will be considered separately for the rest of this paper.
Genetic Evaluation

Carcase and Scan Data Used in BREEDPLAN

Both carcase and scan data is used in BREEDPLAN to produce EBVs for IMF. As a strong genetic correlation has been found to exist between scanned and carcase measurements of IMF, these traits can be combined to compute the IMF EBV. The trait is adjusted to estimate IMF at 300 kg carcase weight. An individual carcase measure will, therefore, contribute more to the accuracy of the EBV than individual ultrasound estimates. The relative ease of collecting the scan measures, the availability of measures on the prospective parent animals and the younger age at which the scans can be taken, all lead to scan data being most likely to constitute the majority of data submitted for IMF EBV calculation.

Is the Accuracy of Scanning Sufficient for Genetic Evaluation Purposes?

If we accept that genetic improvement comes mainly from the selection of superior sires, then the ultimate test of the value of scanning is the relative ranking of sires based on scanning and on carcase measures. Beef CRC, conducted experiments examining sires from seven different breeds which were used in commercial herds and in seedstock (stud) herds concurrently. Calves from the commercial herds were grown out and slaughtered and carcase IMF measured. Calves from the seedstock herds were grown out as entire males and females and scanning was performed on them at appropriate ages. Scanning was carried out by contractors who had passed an accreditation test as described below.

The genetic correlations between scanned heifer IMF and carcase IMF are high, ranging from 0.45 to 0.77. The corresponding genetic correlations between scanned bull IMF and carcase IMF are not as favourable, and one may question the value of scanning young bulls. However if the minimum IMF% analysed is set at 1.5% then the genetic correlations between heifer and bull scans with carcase IMF improves.

The genetic correlation between scanned and carcase IMF is a measure of how well ultrasound information will rank sires on the basis of chemically analysed IMF after slaughter. The results presented above show that heifer scans are quite valuable for ranking the sires but that bull information can be less useful. The difference between the heifer and the bull information has lead to scans from the two sexes being analysed as different traits in BREEDPLAN.

Which Animals Should be Scanned?

The best information comes from groups of animals that are expressing differences in IMF, while still being managed as a contemporary group. As IMF and subcutaneous fat depth are correlated, it is possible to specify fat depth criteria which are associated with the minimum recommended IMF levels at which scanning should be carried out. If animals are scanned with low levels of body fat there will be little difference in subcutaneous fat depth and IMF. Animals, therefore, have to be managed and fed in a way that allows them to express IMF differences prior to scanning.

Older animals tend to express IMF better than younger animals so the older the animal, the better will be the information. Given similar levels of nutrition heifers and steers will tend to be fatter than bulls at the same age and will show higher marbling levels. The following is a checklist to consider when managing animals to be scanned for marbling:

• Animals need to be between 300 and 700 days of age (BREEDPLAN regulation).
• Animals should be exhibiting reasonable condition (suggest group averages 5mm P8 fat depth).
• Heifers will give better results than bulls and will therefore contribute more to a sires EBV.
• Bulls should also be scanned, as their individual record is important for their own EBV, which is commonly used in sale catalogues and selection of young sires. Note, however, that if bull scans are to be of value the bulls must be in reasonable condition.

Ensuring the Accuracy of Scan Data

Currently available real time ultrasound scanning equipment requires a level of operator expertise to achieve accurate results. There is a requirement to interpret the image with expert knowledge of the anatomy of the bovine and for training in the general operation of the scanning machine. These reasons, in association with the relatively high cost of ultrasound equipment, have lead to a system of using accredited scanning contractors.

The Performance Beef Breeds Association (PBBA), which represents breed societies who conduct Group BREEDPLAN analysis through ABRI, has set up a system of accreditation for scanners who want to submit data for BREEDPLAN analysis. Under PBBA guidelines the scanners must sit a test on a regular basis (currently every three years), and meet certain criteria before they are eligible to submit data.
for BREEDPLAN analysis. The accreditation does not have any jurisdiction outside the EBV calculation process managed by BREEDPLAN. Testing of operators has led to confidence in the measurement technique and rapid adoption of the technology for genetic evaluation.

Prospective BREEDPLAN scanners are tested against two criteria; repeatability and accuracy, for all of the traits measured by ultrasound scanning: fat depth (assessed at the 12/13th rib and P8 sites), eye muscle area (EMA) and marbling (expressed as percent intramuscular fat). Repeatability is tested by examining the difference between repeated scans (residual standard deviation or RSD) from the same animals. Accuracy, (the relationship between scanned measurements and actual carcase values, and the relationship (correlation) between live and carcase results.

Table 5c-1. Current PBBA standards for proficiency testing of real time ultrasound assessment of live cattle

<table>
<thead>
<tr>
<th>Ultrasound measurement and assessment criteria</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>12/13th Rib Fat Depth</td>
<td></td>
</tr>
<tr>
<td>Maximum Standard error (RSD) of repeatability</td>
<td>1.0mm</td>
</tr>
<tr>
<td>Maximum Standard error (RSD) of measurement (prediction)</td>
<td>1.0mm</td>
</tr>
<tr>
<td>Correlation with carcase measurement</td>
<td>0.9</td>
</tr>
<tr>
<td>P8 Fat Depth</td>
<td></td>
</tr>
<tr>
<td>Maximum Standard error (RSD) of repeatability</td>
<td>1.5mm</td>
</tr>
<tr>
<td>Maximum Standard error (RSD) of measurement (prediction)</td>
<td>1.5mm</td>
</tr>
<tr>
<td>Correlation with carcase measurement</td>
<td>0.9</td>
</tr>
<tr>
<td>EMA</td>
<td></td>
</tr>
<tr>
<td>Maximum Standard error (RSD) of repeatability</td>
<td>6.0cm²</td>
</tr>
<tr>
<td>Maximum Standard error (RSD) of measurement (prediction)</td>
<td>5.5cm²</td>
</tr>
<tr>
<td>Correlation with carcase measurement</td>
<td>0.8</td>
</tr>
<tr>
<td>IMF</td>
<td></td>
</tr>
<tr>
<td>Maximum Standard error (RSD) of repeatability</td>
<td>1.0</td>
</tr>
<tr>
<td>Maximum Standard error (RSD) of measurement (prediction)</td>
<td>0.9</td>
</tr>
<tr>
<td>Correlation with Carcase</td>
<td>0.75</td>
</tr>
</tbody>
</table>

The results presented in Table 5c-1 outline the current requirements which ultrasound technicians must achieve to be allowed to submit measurements to BREEDPLAN for the calculation of carcase trait EBVs. In the accreditation tests held in Australia, the average correlations and standard errors for all scanners (including those not given accreditation status) exceeded the minimum requirements specified above, suggesting that accredited scanners are capable of achieving results which exceed these standards.

Phenotypic Evaluation of Carcase Marbling (Feedlot Drafting)

There has, recently, been significant interest expressed from lotfeeders and beef cattle marketers in the potential of ultrasound measurements to draft individual animals on the basis of IMF. Accurately measuring the IMF of individuals would be particularly valuable if it could be carried out at entry to, or early in the finishing phase to identify animals which were likely either to perform well for the trait, or to fail to achieve desired marbling levels. The accuracy with which this can be done is determined by examining the correlation between scan and carcase IMF, and the RSD between scanned and carcase IMF results (i.e.: using the same statistics that are examined for the accreditation tests).

In a research program conducted by the Beef CRC, 200 cattle were scanned at feedlot entry and every 35 days until slaughter. Of these, 30 animals were slaughtered after 70 days on feed, while the remaining 170 head were carried to 184 days. Cattle were introduced to the feedlot at an average of 420 kg liveweight. Of the animals slaughtered after 70 days, 25 yielded useful carcase IMF measurements (chemically extracted from a sample of the eye muscle taken to correspond with the scanning site). At slaughter, these 25 animals averaged approximately 550kg liveweight and 12 mm P8 fat depth, while chemically analysed IMF averaged 4.3% and ranged from 2.3% to 6.9%. Of the scanned measurements of IMF, the results from day 70 (immediately prior to slaughter) had the best relationship with carcase
measurements. The correlation between final scanning results and chemically extracted fat from the carcase was 0.79, with an average error of estimation of 0.75%.

These results can be contrasted with those obtained from the animals which were carried on to 184 days on feed, which averaged 715 kg at slaughter; with a scanned P8 fat depth of 22.5 mm. For this, longer fed proportion of the group, the ability of the ultrasound measurements to predict carcase IMF was highest at the day 35 and day 70 scan (Figure 5c-1), but declined for scans taken on day 105, 140 and 175. The average scanned IMF at day 35 and day 70 was 5.18 and 5.62 respectively, with a range of measurements between 1 and 9%. For the three later scans the mean scanned IMF was 6.7%, 6.8% and 6.8%, with a maximum estimate of 10.4%. At slaughter, carcase IMF results averaged 9.4 and ranged from 5 to 22%. These results are a graphic demonstration of the current limitations of the scanning systems developed to accurately measure IMF values beyond approximately 8%.

The average level of error (RSD) for the scan on day 70 was 2.27. With one marble score approximately equal to 1.7% IMF the estimate of marbling could be in error by more than one marble score. The average marble score of the group was 2.3 and so the error is quite large compared to the mean.

In a second trial where 3 scans were taken on cattle fed for 248 days (at feedlot entry, 142 and 221 days on feed). the final scan proved to be the best predictor of carcase IMF. These cattle were of mixed breeds, from many different vendors entered into a carcase competition. Average liveweight at the final scan was 680kg and scanned P8 fat depth was 19 mm. The average carcase IMF was 6.3% ranging from 2.3 to 13%. These carcasses measurements more closely reflected the range within which the ultrasound systems are designed to operate. Ultrasound measurements of IMF taken at day 221 explained 46% of the variation in carcase IMF, had a correlation with carcase IMF of 0.68 and an RSD of 1.6%. This suggests that a crucial factor in obtaining accurate estimates of IMF (using the currently available ultrasound technology) is associated with the range of IMF present in the animals under examination, rather than their liveweight, fatness or days on feed.

The results from both of these experiments demonstrate that scanning could be used to predict carcase IMF (marbling) but the error about the prediction can be quite large, particularly for animals whose IMF levels exceed those beyond the accurate range of current ultrasound equipment (approximately 8%). The real value of scanning from an individual animal management point of view will depend on the current rate at which the animals are meeting specifications under the imposed selection, nutritional and management regimes. If compliance rates are low and the variation in final marble score is high, then scanning early in the finishing phase could be of benefit. The best time to scan will depend on a number of factors and this would need to be an area of further investigation prior to embarking on the exercise. Cost effectiveness would also need some further examination to determine whether scanning can lift compliance rates sufficiently to cover the additional costs of scanning. Most feedlot operators who have trialled scanning mid-term, cite disruption to feeding regimes and slow throughput as inhibitive factors.

Before looking to scanning to predict carcase marbling levels feedlot operators and meat processors should consider the cost effectiveness of improvement in other areas that might improve compliance rates. Such areas as selection of vendors, pre-feedlot treatment and nutritional manipulation may prove more cost effective.

Conclusions

Real time ultrasound scanning for intramuscular fat has potential to increase the marbling level of Australian slaughter cattle. It can be used in two areas, that of genetic improvement and to draft animals on marbling potential. Of the two areas scanning is proven in the area of genetic improvement for marbling where it offers an early and relatively cheap measure of marbling as a substitute for carcase measures. Scanning as a drafting tool for slaughter stock is as yet unproven and largely unaccepted by industry. There are currently other possibilities to improve compliance that could be more cost effective. As beef cattle specific scanning hardware is developed and improved, however,
the potential exists for ultrasound measurements of IMF to provide a useful source of information to feedlot managers.

Acknowledgments

The assistance of staff at “Kerwee” Feedlot, Jondaryan, Queensland, in the collection of scanning measurements is gratefully acknowledged, as is the participation of Brisbane R.N.A. organisers and vendors involved in the 1999 RNA 250 day feedlot trial.