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SUMMARY 
Gene markers have traditionally been ordered using Maximum Likelihood (ML) techniques. In 
this paper a Bayesian alternative for estimating the recombination rates and ordering markers is 
presented and is implemented via a Markov chain Monte Carlo (MCMC) algorithm. By focusing 
on a half-sib design for which there is a class of missing data, namely the dam genotypes, we 
illustrate the improved parameter inference and ease with which common complexities in design 
are accommodated. Results are presented from the analysis of half-sib data where information is 
available on the gene markers CSSM24, CSSMS, CYP21, RM33 and RM185. Using our 
methodology to order the markers and estimate the associated parameters, the marker ordering 
CSSMS RM33 CYP21 RM185 CSSM24 has a posterior probability of 0.97 and the mean 
recombination rates were estimated to be 0.106, 0.168, 0.059, 0.167. This agrees with the 
International Reference Family map. 
Keywords: Bayesian analysis, gene markers, linkage analysis 

INTRODUCTION 
Gene markers and gene marker maps are being used in animal species for parentage testing 
(Moore and Vankan, 1994), disease resistance diagnosis (Fuji et al., 1991) and quantitative trait 
loci (QTL) detection (Georges et al., 1995; Anderson et al., 1994) These maps are a representation 
of the linear order of the genes along a chromosome with the distances between adjacent genes 
proportional to the frequency of recombination between them. The closer two genes are together, 
the less likely a recombination event is to occur. Thus, the frequency of recombination between 
genes serves as a measure of genetic distance and is the basis of gene marker map construction. 

Gene marker maps rely heavily on accurate estimates of marker order, which are ideally obtained 
using three generation pedigrees with informative grandparents, genotypes from all individuals 
and large full sib family size. Such a structure is difficult and expensive to create in some species, 
particularly cattle, and has led to the creation of separate reference and resource families used for 
gene mapping and QTL detection respectively (Hetzel, 1989). Resource families are often 
designed so that an entire class of animal is not genotyped. In the commonly used half-sib and 
granddaughter designs, for example, genotype information on the dams is not collected and is 
consequently regarded as missing. 

In this paper, we illustrate a Bayesian approach to ordering markers for half-sib data. The 
approach presented adopts MCMC in order to perform the required computations. 
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METHODS 
Consider a large half-sib family with a single male parent mated to a large number of females, 
each of which produces a single offspring. N markers are genotyped on the male parent (sires) and 
all progeny but there is no such information on the female parents (dams). It is assumed 
recombination events are independent and markers in the dam population are in linkage 
equilibrium. 

ML has commonly been used for linkage analysis of markers for making maps (Ott, 1991), 
however, the published ML method for the half-sib design is based on the assumption that the 
allele frequencies are known in the ungenotyped population (Georges et al., 1995). This technique 
is very sensitive to this assumption. Furthermore, only point estimates of recombination rates 
between markers and standard errors are obtained from this approach. 

We circumvent these limitations by formulating the problem through a Bayesian paradigm and 
applying MCMC methods to the joint posterior density. Under the Bayesian approach there is no 
assumption regarding allele frequencies. Also the marginal posterior density for each of the 
parameters is obtained and a wide range of inferences can be elicited based on realisations from 
these distributions. 

MCMC techniques are a Pandora’s box of sample based methods specifically designed to sample 
complicated distributional forms. In the context of a Bayesian treatment of the gene ordering 
problem, parameter realisations are obtained by repeatedly sampling the joint posterior density 
where the joint posterior is the product of the likelihood and the priors. The MCMC algorithm 
used in this paper consists of two tasks, parameter estimation and model selection. 

The first task, parameter estimation utilises the Metropolis-Hastings algorithm (Hastings, 1970) to 
realise parameter values for the recombination rates and the allele frequencies. These parameter 
values form a Markov chain whose equilibrium distribution is the parameter’s marginal posterior 
density. By obtaining the marginal posterior density, a large range of inferences are possible eg. 
means, modes, probability statements, credible intervals. 

The second task, model selection, utilises the reversible jump sampler (Green, 1996) which allows 
transitions between models with different marker orderings and marker phase configurations. 
Based upon the frequency with which a model is visited, posterior model probabilities are easily 
obtained. 

A full description of the methodology is beyond the scope of this paper but can be found in 
George et al. (1996). 

The data analysed form part of the gene marker database on the CBX experiment which aims to 
detect QTL for carcass and meat quality traits (Hetzel et al., 1997). Five markers from 
Chromosome 23 were genotyped on three families in the CBX (CSSM24, CSSMS, CYP21, 
RM33, RMl85). The largest family provided 124 progeny with complete data. The analysis was 
used to order the markers and estimate recombination rates and allele frequencies in the dam 
population. 
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The chain was run for 60000 iterations with a burn-in length of 2000. The burn-in is the number 
of iterations discarded from the beginning of the chain to ensure the algorithm is sampling from 
the correct distribution. The chain’s run length was determined through the convergence 
diagnostics of Raftery and Lewis (1992) and Heidelberger and Welch (1983). Because of 
significant autocorrelations up to lag 5, every fifth iteration was retained. 

RESULTS 
After bum-in, very little movement through the model space is observed. This is due to the small 
recombination rates between the markers. The strength of the data to identify a single model is 
influenced by both the marker positions and the size of the family and for this analysis the family 
size is large. Based on the published gene map (Barer&e et al., 1996), the true gene ordering is 
CSSMS RM33 CYP21 RM185 CSSM24. The recombination rates between the markers are 
estimated to be 0.09, 0.20, 0.06 and 0.16. Although information from the published gene map 
could be used to place priors on the recombination rates and the gene marker order, flat priors are 
used throughout this paper. 

There is close agreement between the published results and results presented here. In Table 1, the 
published recombination rates, the mean parameter estimates and 95% credible intervals for the 
recombination rates are given where the marker order is CSSMS RM33 CYP21 RM185 CSSM24 
and the marker phase is 11222/22111. The posterior probability associated with this ordering is 
0.97. 

Table 1. Published recombination rates, mean parameter estimate and 95% credible intervals (CI) 
for the recombination rates where the marker ordering is CSSMS RM33 CYP21 RM185 CSSM24 
and the marker phase is 11222/22 111 

Recombination rate between markers 
CSSMS & RM3382 CYP21& RM185 & 

RM33 CYP2 1 RM185 cssM24 
Published 0.09 0.20 0.06 0.16 
Estimated’ 0.106 0.168 0.059 0.167 
CI (0.0533,O. 172) (0.102,0.244) (0.020,0.116) (0.104,0.242) 

1 mean parameter estimate 

The mean allele frequencies and their 95% credible intervals are given in Table 2. 

Table 2. Mean parameter estimates and 95% credible intervals (CI) for the allele frequencies 
where the marker ordering is CSSMS RM33 CYP21 RM185 CSSM24 and the marker phase 
is 11222/22111 

CSSM5 RM33 cYF-21 RM185 cssM24 
Allele 1 2 1 2 1 2 1 2 1 2 
Eaimatd 0.104 0.142 0.347 0.193 0.181 0.177 0.265 0.171 0.170 0.084 
CI (0.055, (0.085, (0.264, (0.128, (0.117, (0.114, (0.188, (0.108, (0.110, (0.041 

0.165) 0.210) 0.434) 0.268) 0.255) 0.251) 0.348) 0.244) 0.240) 0.142) 
1 mean parameter esnmare 
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DISCUSSION 
In this paper a technique has been presented to order N gene markers in a half-sib design. A 
design which there is an eat&e class of missing genotype information. 

With the proposed formulation, marker order is determined by model selection using a stochastic 
search algorithm, accompanied by a posterior probability for each possible ordering. In addition, 
external information on marker orderings, be it partial or complete, can be included in the analysis 
through prior information. 

A full posterior distributicut is obtained for each recombination rate and a wide range of infbrences 
call be slioited based on redisations from these dist&utions* Exaslpias of some:~. are 
%% ‘,meaus, modes, probability statemen@, tech&Jue provides 8 only, 
poht reeombinatiorl rate& hetwean markers at&d error& These ate oft&n 
oi3tr&d’w*oonai&rabiuooat #or approxitn&ofr due to the oompl&y of the likelihoodand its 
different expressions as the marker order changes. 

Under a Bayesian approach there is no assumption regarding ‘allele &quencies in’ the &&I 
population. These are included as variables to be estimated and their precision is a&o explicitly 
described 

:^_ ‘. 
The teell.u&ueCau! be adep6ed to other~designs and ,pnraldems. Curr@y it ish&g 
develcrpad fbr the&eation and&ra&i@ion of a QTL ,ip a&If-sib design, T&approach rev#+s 
arcnm&the mi3&ne.nnadel \wlrere the QTL is p&t&red through its linkjag with N,&format&ve 
gene markers. 
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