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DOMINANCE EFFECTS IN MIXED MODEL ANALYSES
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SUMMARY
Simulation and calculations based on the likelihood function are used to examine the sampling prop-
erties of maximum likelihood estimates of variance components due to sex-linked, maternal and dom-
inance effects. Data are assumed to have been collected in an experiment designed specifically to
provide a sufficient set of covariances between relatives for this task. Results show that variances due
to sex-linked and dominance effects are inherently difficult to estimate. Moreover, the design suggested
appears to be unsuitable to separate maternal, permanent environmental and dominance variances. The
investigations shown are recommended as part of the design stage of quantitative genetic experiments.

INTRODUCTION
Mixed model analyses fitting the animal model utilise all types of covariances between relatives in
complex pedigrees simultaneously. This allows variances due to multiple genetic or environmental ef-
fects to be separated, provided records for appropriate relatives are available. Fairbairn and Roff (2006)
considered a model which distinguished between autosomal, sex-linked and maternal additive genetic
effects, as well as autosomal and sex-linked dominance effects, and maternal, permanent environmental
effects. In addition, the authors described an experimental design to generate the types of relationships
between animals needed to estimate the associated variance components. This paper examines the ex-
pected sampling properties of estimates for their design, using simulation and likelihood calculations.

MATERIAL AND METHODS
Experimental design. The design of Fairbairn and Roff (2006) involves 3 generations. considering
a number of unrelated families. Generation 1 comprises 8 unrelated individuals, forming 4 pairs of
grandparents. Each pair is assumed to have 4 off-spring, resulting in 16 animals in generation 2; 2 male
and 2 female offspring for pairs 1 and 2 and 4 female offspring for pairs 3 and 4. Each of the 2 full-sib
males (from pairs 1 and 2) is then mated to the unrelated females in the other 3 families (12 matings in
total), generating sets of full- and half-sibs and single- and double-first cousins in generation 3.
Model. Let y denote the vector of observations for a trait of interest, and a, s and m be the corresponding
vectors of autosomal, sex-linked and maternal, additive genetic effects. Further, let da and ds be the
vectors of autosomal and sex-linked dominance effects, c represent maternal, permanent environmental
effects, and e the vector of residuals. This gives model of analysis

y = Xβ + Z (a + s + da + ds) +W (m + c) + e

with β a vector of fixed effects, and X, Z and W the design matrices for fixed, animal and maternal
effects. Allowing for a direct-maternal, additive genetic covariance, σAM , gives variance of y

V = Z
(
σ2

AA + σ2
S S + σ2

DADA + σ
2
DS DS

)
Z′ + σAM

(
ZAW′ +WAZ′

)
+W

(
σ2

MA + σ2
CI

)
W′ + σ2

EI
1AGBU is a joint venture of NSW Department of Primary Industries and the University of New England

407



Genetic Evaluation

with A, S, DA and DS the matrices of autosomal and sex-linked genetic relationships for additive and
dominance effects, respectively, I an identity matrix, and σ2

A, σ2
S , σ2

M , σ2
C , σ2

DA, σ2
DS and σ2

E the
variance components due to a, s, m, c, da, ds and e.
Likelihood. For N unrelated families of equal structure, V = IN ⊗ V0. In the absence of fixed ef-
fects, the log likelihood (logL) and its derivatives can be obtained manipulating only matrices of size
proportional to the number of observations per family (e.g. Thompson 1976)
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with M =

∑N
i=1 yiy′i/d, the matrix of mean squares and cross-products, accumulated across families

(where yi is the sub-vector of y for family i), d the associated degrees of freedom, and θ = {θk} the
vector of variance components to be estimated. H is the ‘expected’ information matrix. H−1, with
elements hkm, gives the asymptotic, lower bound sampling covariances among the elements of θ̂. Using
the normal approximation, the large sample, 95% confidence interval (CI) for the k−th parameter is
given by the interval

[
θk − 1.96

√
hkk, θk + 1.96

√
hkk

]
.

Profile likelihood. Partition θ into a subset of interest, θ1 of length p, and the remaining parameters,
θ2. The log profile likelihood logP (θ1) at θ∗1 is the value of logL obtained by fixing θ1 at θ∗1 and
maximising with respect to θ2, deviated from the maximum of logL. This is the quantity computed
to carry out a likelihood ratio test of the hypothesis that θ1 = θ

∗
1. Asymptotically, −2logP (θ1) has a

χ2 distribution with p degrees of freedom. Hence, 95% confidence limits for a single parameter θk are
given by the values for which logP (θk) is equal to −1.92 (Meyer and Hill 1992). These are readily
determined numerically.
Simulation. The design of Fairbairn and Roff (2006) was simulated assuming that each mating in gen-
eration 2 resulted in 4 offspring, two of either sex. This gave 72 animals in each family. To include
maternal effects, 8 dams of animals in generation 1, without records themselves, needed to be added
to the pedigree. The simulation assumed a reasonably large experiment comprising 200 families of
identical structure, i.e. 14 400 animals recorded, sampling M from a Wishart distribution to represent
the ‘data part’ of logL. Population values assumed were σ2

A = 400, σ2
S = 100, σ2

M = 120, σAM = −30,
σ2

C = 150, σ2
DA = 60, σ2

DS = 20 and σ2
E = 600. Matrices A and S were obtained from the pedigree,

using the tabular method (Emik and Terrill 1949; Fernando and Grossman 1990). Matrices DA and
DS were constructed from the coefficients in the expectations of covariances between relatives given
by Fairbairn and Roff (2006). Estimates were obtained using a Method of Scoring type algorithm
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Figure 1. Means and confidence intervals (◦ information, 4 profile likelihood, O simulation).
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(Thompson 1976), together with a simple derivative-free search (Nelder and Mead 1965) to ensure
convergence. Variance components were constrained to be non-negative, and the direct-maternal cor-
relation was forced to be within the interval [−1, 1]. In addition to the full model with 8 covariance
components, data were simulated and analysed considering subsets of effects. For each scenario con-
sidered, 50 000 replicates were carried out. Empirical 95% confidence limits were obtained as the
values truncating the top and bottom 2.5% of estimates for each parameter.

Table 1. Sampling correlations (see text)

σ2
A σ2

S σ
2
M σAM σ2

C σ
2
DA σ

2
DS σ2

E

σ2
A -29 28 -63 -10 -3 6 -15
σ2

S -30 -9 -5 6 2 -21 1
σ2

M 28 -9 -65 -33 -16 1 10
σAM -63 -5 -66 16 8 2 4
σ2

C -6 3 -14 7 -80 -5 80
σ2

DA -4 4 -22 11 -90 -5 -96
σ2

DS 8 -28 3 2 1 -12 -14
σ2

E -9 0 18 -3 90 -97 -6

RESULTS AND DISCUSSION
Figure 1 summarises likelihood derived and empirical
CIs for analyses fitting all 8 covariance components. For
σ2

A, σ2
S , σ2

M and σAM , CIs derived from the information
matrix and the profile likelihood show good agreement,
with only slight asymmetry in the latter noticeable. This
indicates that the shape of the profile likelihood is well
approximated by the quadratic form assumed under large
sample theory. Furthermore, mean estimates over repli-
cates are close to the population values and empirical
CIs deviate little from their likelihood based counterparts.
While CIs are sizable, this suggests that the experimen-
tal design provides sufficient contrasts to estimate these
components reliably. For the remaining 4 components, however, there are large discrepancies between
the 3 measures of confidence. As shown in Figure 2, profile likelihoods for these components are
asymmetrical and, especially for σ2

DA, rather flat (dashed horizontal line marks −1.92). A substantial
proportion (>30%) of replicates yielded estimates of σ2

DA or σ2
DS which were effectively zero (≤ 0.01).

Consequently, mean estimates for these components are biased upwards. In turn, mean estimates for
σ2

C and σ2
E are biased downwards. Table 1 shows sampling correlations between parameters, giving

expected values from the information matrix below and observed values across replicates above the
diagonal. On the whole there is good agreement between observed and expected values, with some
differences attributable to constraining estimates to the parameter space.

Clearly, there are strong associations between σ2
C , σ2

DA and σ2
E . A substantial negative correlation

between σ2
C and σ2

DA implies that we are able to estimate the sum of these components with reasonable
accuracy, but that we have little information to partition them according to their causal effects. This
is not surprising : only litter mates are subject to maternal, permanent environmental effects. For
the design considered, all litter mates are full sibs and information to estimate dominance variances
comes only from the covariances among full sibs and double first cousins. If feasible, strategies such
as embryo transfer or cross-fostering may thus reduce this inherent sampling correlation. This would
also reduce sampling correlations between σ2

A, σ2
M and σAM (Meyer 1992).

However, as shown in Figure 2, even for a ‘minimum’ model which does not include anything other
than the respective additive genetic effects, estimates of the dominance variances are likely to have
wide CIs, i.e. substantial sampling variances, unless large data sets are available to estimate them.
Similarly, σ2

S appears to be difficult to estimate accurately. For a model comprising σ2
A, σ2

S and σ2
E

only, the profile likelihood derived CI for σ2
S is still as wide as [61.6, 141.9], compared to [53.5, 150.9]

for the full model with maternal and dominance effects. For a model omitting σ2
DA = σ

2
DS = 0, CIs
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Figure 2. Profile likelihood for ‘minimum’ and complete models.

for σ2
A, σ2

S , σ2
M and σAM were slightly reduced over those for the full model, while CIs for σ2

E and σ2
C

were narrowed to [555, 644] and [106, 195], compared to [0, 705] and [41, 211] as shown in Figure 1. In
addition, mean estimates from simulation were equal to population values, indicating that few estimates
required constraining to the parameter space.

CONCLUSIONS
Separating variances between animals into causal components due to different modes of gene action
is inherently difficult. The design suggested comprised sufficient types of covariances between rela-
tives so that contrasts could be constructed to estimate all the components of interest. However, as
profile likelihoods and sampling correlations derived from the inverse of the information matrix show,
scope for distinguishing between variances due to maternal, permanent environmental and dominance
effects is poor. The investigations shown proved illuminating, and are straightforward and computa-
tionally undemanding. They can be recommended as part of the design stage of quantitative genetic
experiments.
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