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ECONOMIC MODELS AND AGRICULTURAL PRODUCTION
SYSTEMS

J. R. ANDERSON*

Summary
A synoptic review of the diverse models that have been developed for economic

analysis of agricultural production is undertaken and these models are placed in
broad perspective. Some practical problems of modelling highlighted by the develop-
ment of simulation procedures are also briefly reviewed.

I. INTRODUCTION
Management may refer to several aspects of operating a system, but, at least

with reference to commercial production in agriculture, it usually connotes manipu-
lation of a system for economic objectives. Economic analysis for management in
business and research has usually been approached through the use or development
of a model of the system. A classification of such models is attempted in Section II
and their applicability is reviewed in Section III. In Section IV some practical
problems of modelling are reviewed with particular emphasis on simulation models.

II. CLASSIFICATION OF MODELS
Three main taxa are used in this classification: (i) whether or not a model

is explicitly time-dependent, (ii) whether or not a model explicitly incorporates
probabilistic elements and (iii) whether or not a model intrinsically involves an
optimization process. Categories are not mutually exclusive because some classes
represent limiting cases of others, and because some models may serve as sub-
models of models in other classes. In referencing the classification, material is
indicative rather than comprehensive, and the selection of references is biased
towards the recent, the Australasian and the notable.

(a) Static determirtistic  models
Much of micro-economics is concerned with static models for which complete

certainty is assumed (i.e. they are deterministic). For this (unreal) timeless and
certain world, optimizing techniques are highly developed and have been applied
to analysis of agricultural production with considerable fruitfulness. The funda-
mental model arising from the neo-classical theory of the firm is the notion of the
response or production function (Heady 1952; Heady and Dillon 196 1). Such
functions have usually been estimated by least squares regression analysis and
manipulated in marginal analyses to indicate optimal resource use - perhaps sub-
ject to certain constraints. The static deterministic model most used by economists
in studying multi-product situations has been linear programming (Heady and
Candler 1958),  in which a linear objective function is optimized subject to a set
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of linear constrains. Livestock “feedmix” problems are now solved routinely using
linear programming (Dent and Casey 1967) and the linear programming model
has become a standard planning tool in farm management (Rickards, Anderson
and Kerrigan 1967).

A variety of simple non-optimizing models related to parametric budgeting
models (Byrne 1964) can be used in economic analysis of agricultural production
(Rickards  and McConnell 1967),  but these barely qualify as mathematical models.
Monte Carlo programming models are not explicitly optimizing but strongly
resemble linear programming formulations. They have been employed for both
feedmix (Dent and Thompson 1968) and farm planning problems (Donaldson and
Webs te r  1968) .  -

(b) Dynamic deterministic models
Less attention has been given to explicitly time-dependent models than to

static deterministic models. Several time-dependent neoclassical models are
reviewed by Dillon (1968),  who illustrates the diverse ways in which time can
enter production models. Mundlak and Razin (197 1) have operationally extended
neoclassical production models to the multi-stage multi-product case.

Other optimizing models designed to model time-dependent economic systems
have been of two broad types: (i) dynamic programming (Burt and Allison 1963)
employing Bellman’s (1957) Principle of Optimality and (ii) multi-period linear
programming models in which several production periods are modelled simultane-
ously within the one matrix. Any optimizing procedure can be used in dynamic
programming such as a series of linear programmes, or, as in Flinn and Mus-
grave’s (1967) analysis of crop response to irrigation, a series of optimized
response functions. For problems involving many periods (i.e. having distant
planning horizons), the size of a programming matrix may become very large and
temporarily exceed the capability of available computers. Pertinent examples of
deterministic multi-period programming models are provided by Loftsgard and
Heady (1959) and Boehlje and White (1969). Since production is seldom deter-
ministic and conditions change over time, most of the information generated in
such multi-period models for periods other than the first is not very useful.

Non-optimizing models developed for dynamic deterministic problems have
been mostly variants of parametric budgeting, often highlighting long-run aspects
of development plans such as animal breeding performance (Ball 1970). Less
frequently these models have been deterministic simulation models of systems
(Greig 197 1). Some attempt has also been made to apply Monte Carlo program-
ming techniques to multi-period problems (Dent and Byrne 1969).

(c) Static stochastic models
In recent years there has been increasing recognition of the importance of

risk in production, and this has been reflected in the inclusion of stochastic ele-
ments in nearly all types of models mentioned. Stochastic versions of static neo-
classical response functions have been developed by Fuller (1965),  Zellner, Kmenta
and Dreze (1966) and most comprehensively by Magnusson (1969). However,
relatively more attention has been given to incorporating stochastic effects in
mathematical programming models, dating from the pioneering risk programming
model of Freund (1956) to the recent stochastic programming models of Cocks
(1968),  Hazel (197 1) and Rae (197 1). A further class of models handling stochastic
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decision problems is that based on modern decision theory which formalizes the
risky choice of acts given a listing of events, probabilities and outcomes (Dillon
1971; Halter and Dean 1971).

Non-optimizing static stochastic models have received only minimal attention
and are represented mainly by some brief flirtation with game theory algorithms
for games against nature (Dillon 1962)).

Dynamic stochastic models
Since all agricultural production processes are intrinsically dynamic and most

are intrinsically stochastic, models which adequately account for both these features
are desirable, but likewise they involve the greatest modelling difficulties.

Apart from some simple models presented by Magnusson (1969),  dynamic
stochastic versions of neoclassical response functions do not appear to have been
developed. Most operational attention to optimizing models has been placed on
mathematical programming (e.g. Cocks 1968; Rae 197 1). Multi-period stochastic
programming models that realistically represent agricultural production systems
are destined to be large and perhaps temporarily beyond feasible computability.
Similar problems of extensive computation are encountered in solving realistic
stochastic dynamic programming models (Dudley, Howell and Musgrave 1971).
Methodolaogically,  the analysis of multi-stage risky decision trees (Hespos and
Strassmann 1965; Hardaker 1969; Raiffa 1968) is closely related to the backward
induction procedure of dynamic programming.

Many other operations research models such as inventory models (Dillon
and Lloyd 1962),  replacement models and queueing models have been developed
to optimize dynamic stochastic problems, but these have seldom been applied in
agriculture. Several pertinent examples of stochastic simulation models are
described in Dent and Anderson (197 1) and an example pertaining to a pasture-
feedlot model is reported by Halter and Dean (1965).

III. APPLICABILITY OF THE CLASSIFIED MODELS
In this brief appraisal, models are considered relative to three criteria -

realism, workability and communicability. An appreciation of a model cannot be
divorced from the purpose for which it is intended. If an analyst is content with a
rather aggregative (i.e. few variables) description of a process, then response
function models may suffice. However, such models become unwieldy for analyses
involving many variables and interdependencies, and for such problems (which
abound in agriculture) their use is virtually ruled out on grounds of unrealism
and unworkability despite the ease with which such models can be communicated
to others. Another difficulty with stochastic versions of these models lies in estima-
tion of parameters to describe the probabilistic effects in response processes.

For optimizing work the mathematical programming models generally offer
the best prospects for success. Although they necessarily involve the linearization
of many relationships, analysts find that this feature usually does not restrict the
realism of these models too much. The logic of sophisticated programming models,
however, is not so readily communicated as with other models - unless all people
concerned are skilled in the methodology or programming. The question of work-
ability is more serious. A realistic multi-period stochastic linear programming
model may be conceived and formulated, but is quite likely to be either insoluble
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or solvable only at very large cost on available computers. Fortunately, comparable
simulation models do not encounter such workability problems; they can be as
realistic as knowledge of a system will permit, and are fairly easily communicated
to .people other than the modellers. They may, however, also involve substantial
computing costs and, in contrast to mathematical programming, standard computer
programmes are not available.

Choice of a particular model depends on objectives and the nature of the
problem. For example, in choosing between, say, a mathematical programming
and a simulation approach, one implicit question will be whether an optimal solu-
tion to a more or less inadequately specified programming model is better than a
reasonably good indication from an appropriately specified simulation model. Such
general consideration of optimality raises the question examined by Day (1964,
197 1) of the nature of an ‘optimum’ and how this reconciles with the alternatives
perceived by decision makers. My guess as to the usual operational choice of
models within categories of Section II is: (a) static deterministic - choose response
functions for single-product and linear programming for multi-product cases, (b)
dynamic deterministic - choose multi-period linear programming, (c) static
stochastic - choose stochastic linear programming and (d) dynamic stochastic -
choose simulation. Categories (a) and (d) will probably continue to engage most
attention of agricultural economists.

IV. SOME PRACTICAL PROBLEMS IN MODELLING
Problems faced by systems modellers are multifarious and only a selection is

mentioned here. The selected problems have been crystallized by the advent of
systems simulation, although to some extent they apply to any modelling activity.

0a Interpretation of output from models
A probable shortcoming of all the optimizing models discussed is that they

optimize a single-dimensioned objective function such as total gross margin,
expected profit or expected utility. Operationally this #is clearly advantageous, but
a real difficulty is that decision makers’ goals usually have several dimensions -
e.g. survival, various financial measures, non-monetary objectives etc. Formal
recognition of multiple objectives is clearly important if not unavoidable in dealing
with most simulation and Monte Carlo programming models where, typically,
analysts are interested in tracing several variables describing the system. Informal
appraisal of output usually demands at least an implicit trade-off or ranking in
importance of the several variables of interest. The decision-theoretic approach
would have such trade-offs made explicit either through lexicographic ordering or
some weighting scheme (Dillon 197 l), sometimes involving the opinions and
weights of several assessors (Turban and Metersky 1971).

(b) Experimentation on models
Simulation modellers have concentrated on experimentation much more than

modellers using optimizing models such as linear programming, who have often
been too optimistic about optimization. A more appropriate approach is to view
all modelling work as a framework for testing hypotheses about the modelled
system (Allee 1959) and this will usually imply some more or less formal experi-
mentation on the modelled system.
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Textbook treatments of experimentation on models (e.g. Naylor 1971) con-
centrate rather too heavily on traditional methods of experimental design directed
to multiple comparisons of means. Experimental designs merely provide an efficient
way of learning about a system, so, in models characterised by many controllable
variables and many output variables of interest, designs that allow efficient estima-
tion of multi-factor response surfaces will be of greatest utility. Candler and Cart-
wright (1969) provide an example of using a composite design to handle several
variables but do not specify any trade-off between their performance measures. In
stochastic simulation experiments there is much unexploited scope for reducing
error variances by developing blocking schemes based on repeatable pseudo-
random number sequences for different sets of stochastic variables (Chudleigh
1971).

(c) Sensitivity analysis
Sensitivity analysis is the testing of a model for robustness in the performance

variables Yj, with respect to parameters (including assumptions and decision rules)
Xi incorporated in the model. In optimizing models it is the sensitivity of the
objective function, particularly in the region of the optimum, rather than of the
optimal solution (which is invariably sensitive) that is of most interest. Modem
linear programming routines facilitate sensitivity analysis of the optimal solution.

There are no golden rules for sensitivity analysis. Various techniques have
been employed, particularly by econometricians, involving systematic perturbation
of the parameters not known with certainty. That is, models are run or solved
while adjustments, denoted here by AXi, are made to parameters. The magnitude
of AXi *is often taken as some multiple of the standard error of Xi where this is
known or can be guessed. Assessment of relative sensitivities has then been
appraised by the magnitudes of slopes, such as AYj/AXi. For analysts Qinterested
in linearizing their models, some measure of symmetry can be useful - e.g. does

An appealing alternative that does not seem to have been used is to express
sensitivities analogously to elasticities Eij = (AYj/Yj)  / (‘Xi/Xi), SO that a matrix
of dimensionless measures of sensitivity could be defined. In turn, the Eij might
be weighted by coefficients, Wj, defining the relative importance of the different
performance measures, Yj.

Whatever the method, what steps logically follow a sensitivity analysis? A
ranking of sensitivities can indicate where further refinement of parameters is best
concentrated. If important model output is very sensitive to many uncertain
parameters, the whole modelling exercise has probably reached the limit of its
achievement - namely in explicitly quantifying ignorance of the system. If it is
sensitive to only one or a few (assumed discrete) parameter(s), the correct pro-
cedure would be to conduct the remaining analysis conditional on specified values
of these parameters, and as a final step combine all results as an expectation based
on the analyst’s subjective joint (if more than one parameter) probability distribu-
tion.

of a
Validation is the process of determining the acceptability or reasonableness
model for its intended purpose. Much has been and will continue to be

written on this topic, as it is certain to be the focal point for most controversies
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in modelling. Most of the literature (e.g. Naylor 197 1) concentrates unduly on
testing the goodness of fit between the behaviour of the model and the observed
real system - usually based on some historical sequence of observations. This has
been conventional practice with response functions and simulation models, whereas
mathematical programmers have usually given too little attention to validation.

Validation  must be essentially a subjective procedure and would be better
recognised as such. This is partly because of the inevitable dependence of models
on largely non-quantitative subjective knowledge, and partly because history may
have little bearing on the future. Certainly models should be internally consistent
and superficially valid and comparison with historical traces may assist in judging
this. But historical goodness of fit is of very limited assistance in assessing ‘variable-
parameter’ validity and ‘event’ validity (Herman 1967) which are usually important
for analytical purposes.

V. CONCLUSION
Analytical man likes building models, and economists interested in agricul-

tural production systems are no exception. Thus model building will probably
continue to accelerate, particularly in the dynamic stochastic class of models.

The iceberg of problems in modelling has many hidden features, and only
some of the more obvious dangers have been mentioned here. Modelling is no
panacea but it has often proved most effective. When embarked upon with caution,
skill and scepticism it will continue to be a useful endeavour.
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