A survey of cattle handling facilities was carried out on 37 properties in Victoria to establish current industry practice in yard design and to document design and construction characteristics of these facilities. This information is to assist in the design of experimental cattle handling components for future testing. The properties surveyed were selected on the basis that they handled mobs of at least 50 head at any one time and that they were a representative range of yards from all regions of Victoria.

Information collected during the survey was grouped into three categories based on the shape of the force yards: (A) circular force yards with two gates rotating through 360°, (B) triangular force yards with one side in line with the race and an approach angle of not greater than 40° and (C) force yards with the approach angle to the race greater than 40° (fig. 1). The latter group included square and rectangular yards as well as those with diverging panels on both sides of the race.

Categories A, B and C made up 22, 54 and 24% respectively of the yards surveyed. All circular force yards led to curved races while only 25 and 11% of yards in categories B and C led to curved races. The percentage of "V" shaped or tapered races used in conjunction with the various types of force was 87, 10 and 0% for A, B and C respectively. The mean race length from each type of yard was 19.0 ± 3.6 m (± SD) for A, 11.0 ± 3.6 m for B and 9.3 ± 2.9 m for C. Similar methods of construction were used in all types of yard design, however, a slightly greater number of yards were built with timber rails in preference to the more open type of construction employing pipe or mesh panelling (60% cv 40%). The mean ramp gradient for loading ramps in yards was 28.0 ± 6.2 per cent.

None of the yards surveyed used the totally enclosed panels as recommended by Grandin (1980) however, three of the type A yards had solid panels on the outside of a curved race. The loading ramp gradient in most yards was considerably greater than the 20 per cent gradient recommended by Vowles (1981). Although there appeared to be a wide variation in overall yard design, the method of construction was relatively standard. The most common force yard examined in the survey was type B.