INFLUENCE OF NITROGEN FERTILIZER ON YIELD AND QUALITY OF PASTURE SILAGE FOR MILK PRODUCTION

A.M. HODGE and G.L. ROGERS

Nitrogen (N) fertilizer can be used on pasture in spring to increase silage yield (Morrison et al. 1983). The feeding value of N-fertilized silage fed with concentrates has been documented (Castle and Watson 1969). We investigated the effects of N fertilizer on silage yield and quality for milk production when it was fed as a supplement with pasture. Silage yield was increased by 30% \((P<0.05) \). Control and N fertilized silages were fed ad libitum with limited pasture (50:50 DM basis) to cows in stalls during mid-late lactation.

Daily yields of milk, milk fat and milk protein did not differ significantly \((P>0.05) \) between the two groups of cows. There were no differences between the two silages in dry matter digestibility or nitrogen content, but cow intakes of N-fertilized silage were higher \((P<0.05) \). Rumen \(\text{NH}_3-N \) and plasma \(\text{urea-N} \) concentrations were similar for both silages.

The results indicate that N fertilizer gave higher yields of silage and did not depress the feeding value of pasture silage for milk production.

EFFECT OF SOMATOSTATIN IMMUNITY ON THE GROWTH OF CROSSBRED LAMBS

R.M. HOSKINSON, P. DJURA, R.J. WELCH and B.E. HARRISON

Conflicting reports have suggested that somatostatin (SRIF)-immune lambs may express either a diminished (Varner et al. 1980) or an enhanced (Spencer and Garssen 1983) growth rate. Our study was undertaken to clarify possible reasons for these inconsistent effects. Second cross lambs (DH x BLM) were actively immunized (I) against SRIF using a SRIF:haemocyanin conjugate and Freund’s complete adjuvant (\(N=17 \)). Controls (C) (\(N=22 \)) were untreated lambs. Vaccinations were given (i.m., s.c.) during weeks 2, 7, 12 and 24 post partum. The SRIF-specific antibody response was measured using \(I\text{-TyrO-SRIF} \). Live weight was measured monthly and shoulder height on four occasions.

There was no detectable SRIF-specific primary antibody response. 50% of lambs responded to the week 7 boost. All vaccinated lambs had an antibody titre following the week 11 vaccination \((\text{mean } 1:11300\pm3800) \). Live weights (kg) at birth \((4.5\pm0.2 \text{ (I)} vs 4.4\pm0.1 \text{ (C)} \) and at mean age 133 days \((41.5\pm1.1 \text{ (I)} vs 43.7\pm1.4 \text{ (C)} \) were not significantly different. Shoulder heights (mm) at birth \((412\pm6 \text{ (I)} vs 412\pm5 \text{ (C)} \) and at mean age 133 days \((579\pm4 \text{ (I)} vs 580\pm4 \text{ (C)} \) were not significantly different. There was no correlation between live weight \((39.9\pm1.9 \text{ (i)} vs 43.0\pm0.9 \text{ (C)} \) and antibody titre when immune lambs were ranked into two populations of different \((P<0.001) \) titre \((11:3400\pm1222 \text{ vs } 1:40000\pm4000) \). We conclude that SRIF-immunity is unpromising as a method for stimulating the growth rate of crossbred lambs.

REFERENCES

Dairy Research Institute, Ellinbank, R.M.B. 2460, Warragul, Victoria 3820
