Assessing the sustainability of wheat-based cropping systems using APSIM: model parameterisation and evaluation

Livestock Library/Manakin Repository

Show simple item record

dc.contributor Moeller, Carina
dc.contributor Pala, Mustafa
dc.contributor Manschadi, Ahmad M
dc.contributor Meinke, Holger
dc.contributor Sauerborn, Joachim
dc.date.accessioned 2012-03-08T00:40:52Z
dc.date.available 2012-03-08T00:40:52Z
dc.date.issued 2007
dc.identifier.uri http://livestocklibrary.com.au/handle/1234/31613
dc.description.abstract Assessing the sustainability of crop and soil management practices in wheat-based rotations requires a well-tested model with the demonstrated ability to sensibly predict crop productivity and changes in the soil resource. The Agricultural Production Systems Simulator (APSIM) suite of models was parameterised and subsequently used to predict biomass production, yield, crop water and nitrogen (N) use, as well as long-term soil water and organic matter dynamics in wheat/chickpea systems at Tel Hadya, north-western Syria. The model satisfactorily simulated the productivity and water and N use of wheat and chickpea crops grown under different N and/or water supply levels in the 1998?99 and 1999?2000 experimental seasons. Analysis of soil-water dynamics showed that the 2-stage soil evaporation model in APSIM's cascading water-balance module did not sufficiently explain the actual soil drying following crop harvest under conditions where unused water remained in the soil profile. This might have been related to evaporation from soil cracks in the montmorillonitic clay soil, a process not explicitly simulated by APSIM. Soil-water dynamics in wheat?fallow and wheat?chickpea rotations (1987?98) were nevertheless well simulated when the soil water content in 0?0.45�m soil depth was set to ?air dry' at the end of the growing season each year. The model satisfactorily simulated the amounts of NO3-N in the soil, whereas it underestimated the amounts of NH4-N. Ammonium fixation might be part of the soil mineral-N dynamics at the study site because montmorillonite is the major clay mineral. This process is not simulated by APSIM's nitrogen module. APSIM was capable of predicting long-term trends (1985?98) in soil organic matter in wheat?fallow and wheat?chickpea rotations at Tel Hadya as reported in literature. Overall, results showed that the model is generic and mature enough to be extended to this set of environmental conditions and can therefore be applied to assess the sustainability of wheat?chickpea rotations at Tel Hadya.
dc.publisher CSIRO
dc.source.uri http://www.publish.csiro.au/?act=view_file&file_id=AR06186.pdf
dc.subject wheat
dc.subject chickpea
dc.subject Mediterranean
dc.subject model evaluation
dc.subject soil water
dc.subject soil nitrogen
dc.title Assessing the sustainability of wheat-based cropping systems using APSIM: model parameterisation and evaluation
dc.type Research
dc.description.version Journal article
dc.identifier.volume 58
dc.identifier.page 75-86
dc.identifier.issue 1


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search Livestock Library


Advanced Search

Browse

My Account